FIRST Heat – A Simple Tool that Estimates DE Costs and Benefits for Communities at Risk of Wildfire

David Dubois – Chief of Engineering and Technical Outreach Specialist
Wildland Fire Canada 2016 – Kelowna
October 27, 2016

www.communityenergy.bc.ca
Community Energy Association Purpose

- CEA is charitable non-profit society
- CEA is the trusted independent advisor to local governments
- We are helping local governments close the implementation gap

Accelerate Climate Action with People and Projects

Awareness & Recognition
- Workshops & Presentations
- Research & Publications
- Collaboration
- Climate & Energy Action Awards

Projects
- Planning
- Implementation
- Technology Acceleration
Energy Cost Comparison

Cost / GJ

- Wood chip: $65/tonne
- Natural Gas: $10/GJ
- Wood pellets: $243/ton
- Electricity: $0.10/kWh
- Propane: $0.79/l
- Heating Oil: $1.30/l
- Mobility Fuels: $1.30/l

www.communityenergy.bc.ca
This is District Heating

Source: Vital Energi Utilities
Enderby District Heating System

- Tony's Tire: 35 kW
- Edwin D.: 15 kW
- Enderby Autobody: 35 kW
- Pool: 80 kW (Summer only)
- Fink Machine: 85 kW
- ENFAB: 90 kW
- Marvin's Mechanical: 20 kW
- Royal Inn: 15 kW (DHW)
- Park View Place: 120 kW
- Cedar Solution: 60 kW
- CNC: 45 kW

Boiler House
- Pyrot 540 kW
- Fuel: Chips / Pellets
- Back-Up: Gas

Images of the heating system and facility.
Telkwa District Heating

Pub & Store Village Office School

~ 100 m
How much do I need?
How much do I need?

Typical Biomass Consumption by Usage

- Pellet Plant: 12,000 Truck Loads
- Power Plant: 5,000 Truck Loads
- 5MW Community Electricity: 5,000 Truck Loads
- Enderby: 0 Truck Loads

Tonnes of Biomass per Year

www.communityenergy.bc.ca
How much do I need?

Typical Biomass Consumption by Usage

- Pellet Plant: 12,000 Truck Loads
- Power Plant: 5,000 Truck Loads
- 5 MW Community Electricity: 1,000 Truck Loads
- Enderby: 20 Truck Loads

www.communityenergy.bc.ca
Fire Interface Rural Screening Tool for Heating (FIRST Heat)

Designed for non-technical people to evaluate biomass heating using fuel derived from Wildfire Abatement – a Local Fuel

• Joint project funded by PICS Carbon Management in BC Forests program.
 Multidisciplinary approach:

 • **University of British Columbia**: Ecological modelling and spatial mapping
 • **Community Energy Association**: Economics
 • **Green Heat Initiative**: Technical

[Images and logos of UBC, Community Energy Association, and Green Heat Initiative]

[Website link: www.communityenergy.bc.ca]
Selecting Model Communities

1. Surrounded by forests under wildfire risk management.
2. In different eco-climatic zones of BC.
3. Not connected to the natural gas grid or paying higher price.
4. No district heating systems.
Wildfire Abatement = Fuel

- Guidelines for reducing fire risk in the urban / forest interface have been created:

 → Gradient of increasing management intensity from the forest to the urban area:

 - Reduction of tree density (**thinning**)
 - Reduction of fuel ladders (**pruning**)
 - Reduction of **fuel load** (Coarse Woody Debris - CWD)
 - **Substitution** of conifers by broadleaves
 - Building fire-proofing
Determining Available Biomass

• For each community, forest inventories were used to create **analysis units**.
 → A specific combination of site fertility, tree species composition, tree density, and forest age
 (i.e., poor site, spruce + pine, 2000 trees / ha, mature forest)

• Forest management scenarios were created for each community following the **FireSmart** guidelines
 → **High wildfire risk**: High tree density, 10 years between tree re-growth control operations
 → **Moderate wildfire risk**: Low tree density, 10 years between tree re-growth operations, removal some CWD
 → **Low wildfire risk**: Low tree density, 5 years between tree re-growth operations, removal most CWD
Determining Available Biomass

- For each community, all the combinations of analysis units and forest management regimes were simulated with FORECAST for 50 years.

Ecosystem-level model

Long-term comparison of alternative management plans

Three main limiting factors for tree growth:

Climate
Nutrients
Management

www.communityenergy.bc.ca
Sample Output Map

Sicamous: Harvested biomass available annually from years 1-11 (intermediate mgmt scenario)

• Polygon-based GIS maps
• Maps are generated for two periods:
 o Density intervention
 o Re-growth control

www.communityenergy.bc.ca
Sample Output Map

Sicamous: Harvested biomass available annually from years 1-11 (intermediate mgmt scenario)

- Total metric tonnes of non-merchantable biomass + total harvested merchantable biomass stems harvested
- **Map legend:**
 - District of Sicamous

Ownership and availability:
- Schedule B* land - Tree Farm Licence (Crown Land)
- Land not available for long-term integrated res. mgmt

- **Total harvested biomass within 25km of Sicamous (tonnes/yr):**
 - 1 - 100
 - 100 - 200
 - 200 - 300
 - 300 - 400

Polyon-based GIS maps

Maps are generated for two periods:
- Density intervention
- Re-growth control

<table>
<thead>
<tr>
<th>Study area</th>
<th>Legend</th>
<th>Min. mgmt (tonnes/yr)</th>
<th>Int. mgmt (tonnes/yr)</th>
<th>Max. mgmt (tonnes/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All forest stands <25km from district of Sicamous</td>
<td>![Legend]</td>
<td>Year 1-11: 1,842,999</td>
<td>Year 1-11: 3,266,118</td>
<td>Year 1-11: 3,382,763</td>
</tr>
<tr>
<td>All forest stands <25km from district of Sicamous excluding land not available for long-term integrated resource management</td>
<td>![Legend]</td>
<td>Year 12-50: 102,868</td>
<td>Year 12-50: 106,914</td>
<td>Year 12-50: 123,057</td>
</tr>
<tr>
<td>All forest stands <25km from district of Sicamous excluding land not available for long-term integrated resource management</td>
<td>![Legend]</td>
<td>Year 11-1: 1,541,069</td>
<td>Year 11-1: 2,641,481</td>
<td>Year 11-1: 2,742,819</td>
</tr>
<tr>
<td>Stands at high risk to wildfire <25km from district of Sicamous, excluding land not available for long-term integrated resource management</td>
<td>![Legend]</td>
<td>Year 12-50: 89,384</td>
<td>Year 12-50: 88,486</td>
<td>Year 12-50: 100,073</td>
</tr>
<tr>
<td>Stands at high risk to wildfire <25km from district of Sicamous, excluding land not available for long-term integrated resource management</td>
<td>![Legend]</td>
<td>Year 1-11: 590,966</td>
<td>Year 1-11: 1,060,770</td>
<td>Year 1-11: 1,097,874</td>
</tr>
<tr>
<td>Stands at high risk to wildfire <25km from district of Sicamous, excluding land not available for long-term integrated resource management</td>
<td>![Legend]</td>
<td>Year 12-50: 29,618</td>
<td>Year 12-50: 26,525</td>
<td>Year 12-50: 31,723</td>
</tr>
</tbody>
</table>

www.communityenergy.bc.ca
Engineering Considerations

• Use best available **proven technology** with emissions approaching Natural Gas. Replicate not Innovate.

• Assumes **all biomass generated** from wildfire abatement is used in a **single heat plant**
 - In reality there might multiple heat plants that may or may not be connected

• Biomass is designed for **average heat demand and supply 80-90% of Total Heat Load**. Other fuels for peak heat demand
Engineering Considerations

- Use best available **proven technology** with emissions approaching Natural Gas. Replicate not Innovate.
- Assumes **all biomass generated** from wildfire abatement is used in a **single heat plant**
 - In reality there might multiple heat plants that may or may not be connected
- Biomass is designed for **average heat demand and supply 80-90% of Total Heat Load**. Other fuels for peak heat demand

FIRST Heat should only be used as proof of concept
Financial Considerations

- Economic calculations conducted using **Levelised Cost of Energy LCOE**
- LCOE expresses the **lifecycle cost of energy** from a system per unit of energy delivered.
- Typically **competitive with or lower than conventional energy** in communities with no or restricted access to natural gas

<table>
<thead>
<tr>
<th>Cost of Energy</th>
<th>$/GJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>20.9</td>
</tr>
<tr>
<td>Propane (commercial supply)</td>
<td>19.5</td>
</tr>
<tr>
<td>Heating oil</td>
<td>31.0</td>
</tr>
<tr>
<td>LCOE for biomass district heat system (typical)</td>
<td>13-18</td>
</tr>
</tbody>
</table>

- Biomass is a low cost fuel, but the **high capital cost** of district energy systems raises the cost of delivered energy
FIRST Heat Dashboard

Community Energy Systems Data Table

<table>
<thead>
<tr>
<th>Year</th>
<th>Data</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2023</td>
<td>kWh</td>
<td>Total Energy Use</td>
</tr>
<tr>
<td>2024</td>
<td>kW</td>
<td>Total Heat Production</td>
</tr>
</tbody>
</table>

Energy Savings Opportunities

- **District Energy Systems**: Cost savings estimated at $50,000.
- **Site Energy Systems**: Potential for 20% energy reduction.
- **Energy Efficiency Measures**: Potential for 15% energy reduction.

Energy Consumption

- **Electricity**: 20% reduction expected.
- **Natural Gas**: 15% reduction expected.

Energy Validation

- **Data Validation**: All data verified by trusted sources.
- **Accuracy**: Data accuracy verified at ±5%.

Contact Information

For further information, please contact:

- **Community Energy Coordinator**
 - Email: communityenergy@bc.ca
 - Phone: 123-456-7890

Visit our website for more information:

www.communityenergy.bc.ca
FIRST Heat Dashboard

Characterize your forest: Select the most similar from the options below

Forest Type
A. SBS: Cold Sub-Boreal Spruce / pine (like Burns Lake)
B. Mature (80-160 years) forest
C. Minimum tree density recommended by FireSmart

Fire Risk Management Level
C. forests stands at high risk to wildfire and available for long term management

Management Zone (within 25 km of Community)

Area of Management Zone (Ha)
10,000
FIRST Heat Dashboard

PRELIMINARY RESULTS

BIOENERGY

<table>
<thead>
<tr>
<th>AVAILABLE</th>
<th>Yr 1-11</th>
<th>Yr 12-50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass from fire management</td>
<td>427,620 t/yr</td>
<td>1,010 t/yr</td>
</tr>
<tr>
<td>Biomass available for heating</td>
<td>299,334 t/yr</td>
<td>707 t/yr</td>
</tr>
<tr>
<td>Bioenergy available</td>
<td>3,343,562 GJ/yr</td>
<td>7,900 GJ/yr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Factor</th>
<th>Yr 1-11</th>
<th>Yr 12-50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Fossil energy heating use</td>
<td>Needs opt. data</td>
<td>GI/yr</td>
</tr>
<tr>
<td>Available bioenergy as % of community fossil heating</td>
<td>Needs opt. data</td>
<td>GJ/yr</td>
</tr>
<tr>
<td>Proposed bioenergy consumption as % of available</td>
<td>0.24%</td>
<td>100.00%</td>
</tr>
<tr>
<td>Potential Annual export revenue (no local bioenergy)</td>
<td>$1,339,902</td>
<td>$3,166</td>
</tr>
</tbody>
</table>

Bioenergy considerations

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potential of soil fertility loss in 50 yrs</td>
<td>MODERATE</td>
</tr>
</tbody>
</table>
Maximum bioenergy systems size, based on yrs 11-50

Overview
- Max sustainable thermal output by bioenergy systems: 6,715 GJ/yr
- Thermal output for corresponding peaking systems: 746 GJ/yr
- Total DH thermal output, inc. efficiency losses: 6,584 GJ/yr
- Max thermal rated capacity of bioenergy systems: 500 kW

Capital Cost - energy systems
- $1,310,000

Jobs from energy systems construction phase
- 8 FTE's

Jobs at energy systems, from energy systems operation
- 0.3 FTE's

Jobs from harvesting fuel
- 0.7 FTE's

$ spent on biomass by bioenergy systems
- $35,364

Max commercial m² heatable by biomass, yrs 11-50
- 9,167 m²/yr

Economics & GHGs

<table>
<thead>
<tr>
<th>Levelized Cost of District Heat</th>
<th>$/GJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>(natural gas peaking)</td>
<td>$20.82</td>
</tr>
<tr>
<td>(electricity peaking)</td>
<td>$22.27</td>
</tr>
<tr>
<td>(propane peaking)</td>
<td>$22.09</td>
</tr>
<tr>
<td>(heating oil peaking)</td>
<td>$23.62</td>
</tr>
</tbody>
</table>

Local energy savings

<table>
<thead>
<tr>
<th>Annual local energy savings</th>
<th>Needs opt. data</th>
</tr>
</thead>
<tbody>
<tr>
<td>(natural gas peaking)</td>
<td>$0</td>
</tr>
<tr>
<td>(electricity peaking)</td>
<td>$6,709</td>
</tr>
<tr>
<td>(propane peaking)</td>
<td>$5,518</td>
</tr>
<tr>
<td>(heating oil peaking)</td>
<td>$15,583</td>
</tr>
</tbody>
</table>

GHG reduction

<table>
<thead>
<tr>
<th>GHG reduction</th>
<th>Needs opt. data</th>
</tr>
</thead>
<tbody>
<tr>
<td>(natural gas peaking)</td>
<td>321</td>
</tr>
<tr>
<td>(electricity peaking)</td>
<td>359</td>
</tr>
<tr>
<td>(propane peaking)</td>
<td>312</td>
</tr>
<tr>
<td>(heating oil peaking)</td>
<td>294</td>
</tr>
</tbody>
</table>
Conclusions

- Biomass energy can benefit rural and remote communities
- FIRST Heat tool is a simple and scientific means of determining the viability of biomass heating in local communities.
- FIRST Heat
 www.communityenergy.bc.ca

David Dubois, BSChE
Chief of Engineering and Technical Outreach Specialist
ddubois@communityenergy.bc.ca
250-457-7319